(2/c+2)+(5/c^2-4)

Simple and best practice solution for (2/c+2)+(5/c^2-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/c+2)+(5/c^2-4) equation:


D( c )

c^2 = 0

c = 0

c^2 = 0

c^2 = 0

1*c^2 = 0 // : 1

c^2 = 0

c = 0

c = 0

c = 0

c in (-oo:0) U (0:+oo)

2/c+5/(c^2)-4+2 = 0

2*c^-1+5*c^-2-2 = 0

t_1 = c^-1

5*t_1^2+2*t_1^1-2 = 0

5*t_1^2+2*t_1-2 = 0

DELTA = 2^2-(-2*4*5)

DELTA = 44

DELTA > 0

t_1 = (44^(1/2)-2)/(2*5) or t_1 = (-44^(1/2)-2)/(2*5)

t_1 = (2*11^(1/2)-2)/10 or t_1 = (-2*11^(1/2)-2)/10

t_1 = (-2*11^(1/2)-2)/10

c^-1-((-2*11^(1/2)-2)/10) = 0

1*c^-1 = (-2*11^(1/2)-2)/10 // : 1

c^-1 = (-2*11^(1/2)-2)/10

-1 < 0

1/(c^1) = (-2*11^(1/2)-2)/10 // * c^1

1 = ((-2*11^(1/2)-2)/10)*c^1 // : (-2*11^(1/2)-2)/10

10*(-2*11^(1/2)-2)^-1 = c^1

c = 10*(-2*11^(1/2)-2)^-1

t_1 = (2*11^(1/2)-2)/10

c^-1-((2*11^(1/2)-2)/10) = 0

1*c^-1 = (2*11^(1/2)-2)/10 // : 1

c^-1 = (2*11^(1/2)-2)/10

-1 < 0

1/(c^1) = (2*11^(1/2)-2)/10 // * c^1

1 = ((2*11^(1/2)-2)/10)*c^1 // : (2*11^(1/2)-2)/10

10*(2*11^(1/2)-2)^-1 = c^1

c = 10*(2*11^(1/2)-2)^-1

c in { 10*(-2*11^(1/2)-2)^-1, 10*(2*11^(1/2)-2)^-1 }

See similar equations:

| x+1/x=10 | | 17Y-2t-3t+y= | | PLUS+PLUS= | | 5x+14=x | | 3+3g=5g-9 | | x+3=x+23 | | 0.10x+.05(2-x)=.10(6) | | 2x+8y=56 | | 8^4x=1/16 | | -2(5j-13)=3(8-2j) | | 5/y+4+11/y2 | | 5/y | | 3x+2/2=4 | | 24x-48y=0 | | -4/5(20X-5Y) | | 34(-x+6)=88 | | -4x/6=36 | | -2x/-11+14=0 | | -5x/-2=-20 | | 6x/4=18 | | 12x/-1+12=0 | | -6x/-9=60 | | -4x/-10=-20 | | -10x/-11+70=0 | | 4x/-11=-48 | | -6x/-4=66 | | -6x/-4=-66 | | -4x/-5-20=0 | | 12x/2=-60 | | 2x/3-6=0 | | -9x/-6=36 | | 4x/2=4 |

Equations solver categories